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FLOW OF A VISCOUS FLUID BETWEEN FIXED AND BLOWN ROTATING DISKS

L. A. Dorfman

ABSTRACT. Discussion of the problem of motion of a
viscous incompressible fluid in the interspace between an
infinite rotating plane and a parallel fixed permeable
plane through which supplementary fluid is injected at a
constant rate. The problem is solved by solving a system
of Navier-Stokes equations.

§ 1. Let us investigate the problem of the motion of a viscous incom- /86*
pressible fluid in the space between an infinite rotating plane and a fixed
plane which is parallel to it. An additional fluid passes through this latter
plane at a constant rate (Figure 1),

We must solve a system of Navier-Stokes equations in order to calculate
the flow in the space between the fixed and rotating planmes. These equations
are assumed for a steady regime, with allowance for axial symmetry in a cylin-
drical coordinate system r, ¢, z having the following form:

61; 7,2 10 o2 16 2.
’+ "__1._____L. o, v, i
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Here Vo v¢, and v, are the radial, circumferential, and axial velocity
components, respectively; p — pressure; p - density; v - kinematic viscosity of
the fluid.

The components v, and v, are related by the equation of discontinuity
e % (1.2)
In order to satisfy this equation identically, let us introduce the current
function ¢, so that
1% -1
r

oy
Uz r ar’ Up = Bz

(1.3)

As may be readily ascertained, the problem under consideration is a self-
similar problem.

Actually, if we introduce the functions f(z) and G(z) so that
V=o0s?f (L), ve=roGl), L=2z/s (1.4) (1.4)

where s is the distance between the fixed and rotating walls, then after sub-
stituting (1.3), (1.4) in system (1.1) we obtain a system of two ordinary

* Numbers in the margin indicate pagination in the original foreign text.



U s

A -ar6

// 008

T T T 0. 1
)
\é |

D
Vg / 4 VR=& "
‘ I u’,/wr
wR-215
Hia5
5 - %
i \
—2a215
[ W_Ex : 10
s / 0
Figure 1 Figure 2

differential equations from the first two equations:

=AU (PG 2E =0 (1.5)
. 1+ G"—2fG' +2fG =0
The third equation yields the following expression for the pressure
2 wrotst (— P+ f) +E0t (R= ) (1.6)
Here R is the Reynolds number; E - unknown constant. The radial and /87

axial velocity components may be determined by means of f(Z) according to the
following formulas
Urr= — (Orf', v, = 2(osf (1.7)

The boundary conditions of the problem assume the following form on the
fixed wall (¢ = 0)

O =s2=k f(0)=0, G@O)=0 (1.8)
and the following form on the rotating wall (§ = 1)
=0 fM=0 6GH=1 (1.9)

§ 2. The nonlinearity_ of.the.numerical solution of the boundary value problem
(1.5), (1.8), (1.9) entails some difficulty. In order to solve the problem by
the method of trial and interpolation, we must know the values of all the neces-
sary boundary conditions at one of the ends in the first approximation, in order
to begin to solve the Cauchy problem. For small R numbers, these approximate
solutions may be obtained by expanding the desired quantities in power series



with respect to R.
F@®) =fo@) + R (@) + B2 (@) + - - -
G(%) = g0 (D) + Rg\ (L) -+ Roga(T) & - - - 2.1
E=FEy+RE,+ R+ - - .

We may satisfy the boundary conditions due to the fact that we set
go)=1, £ (O)=k

and otherwise we set fn’ f'n, 8, equal to zero at both ends.

Substituting (2.1) in (1.5) and setting the coefficients equal to zero
for powers of R, with allowance for the boundary conditions for fn and g > Ve

obtain the following expression

fo=k, 8o =&, Ey =35

Fr =Yool —sok® + Ysel?, 81 = AL (£ —1), Ey = — ook

o = Yok (8L — 12° — 904 + 222% — 9L?)

gz = — Yiso (4:57 —*/sL® + T + 8/asl) + 24* (*/st® —1/al* 4+ Y/el)

We may use this expression to find the approximate values of the lacking
boundary conditions. As the computation shows, particularly for increasing
R numbers (and small k): the values of the boundary conditions close to the
rotating disk (¢ = 1) will be decisive for solving the nonlinear boundary value
problem (1.5), (1.8), (1.9). This corresponds to the physical fact that in this
case the rotation of the disk has a decisive influence upon the flow. There-
fore, the computation is performed, beginning with the boundary conditions for
the case £ = 1. From formulas (2.2), the first approximations for the lacking
boundary conditions have the following form in the case £ =1

(1) = YR + YokR*+ ..., E = 20 — TfekR + . . .
G (1) =14 + kR + (oo + VIR + . . .
They were employed to solve the boundary value problem for small R on an
ETsVM by the method of trial and interpolation. For increased values of R and k,

the values of f" (1), G' (1) and E were determined in the first approximation
according to those found previously by the method of extrapolation, etc.

(2.2)

(2.3)

We should note that with an increase in R there is an increase in the /88

slope representing the derivative of f, G with respect to { clese to the wall,
and the convergence of the successive approximations becomes worse. In order

to avoid this, extension of the axis [ is imtroduced, so that the new indepen-
dent variable is not related to the distance s between the walls

t=:Varv =t VR (2.4)
and a new function is introduced . _
F~/VR (2.5)
Then, if we designate differentiation with respect to £ by a dot, we
obtain the following system of differential equations from (1.5)
F*—2FF 4+ (F) —G +2E=0, G —2FG +2F G =0 | (2.6)

with the boundary conditiomns
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GO) =0, G(VYR) =1, F(YR=F (YR = F@O0) =0
F0O)=kVR (2.7)

We thus have

FR=FE), CR=GCEHVR rRQ=F®&VR

(2.8)
BFEERS @) = orvhehET B %= e = B0 6 () = prvieiGT (§)

The introduction of the variable { for a large dimensionless distance
/R between the planes is suggested by experienmce im solving the corresponding
problems for a disk rotating in infinite space [see, for example (Ref. 1)]. A
numerical solution of the differential equations (2.6) was performed on an ETsVM
by the Runge-Kutta method with automatic selection of the step [modification of

Merson (Ref. 2)] within an accuracy of 10~7. The programming was done by J. Z.
Serazetdinov.

§ 3. Let us present the computational results. Let us first investigate /89
the case in which there is no blowing (k = 0). We should point out that Grohne
(Ref. 3) studied this case; however, he performed computations only to /R = 10.
Attention should be called (Table 1) to the monotonic change, as a function
of /E, of the basic flow parameters characterizing the pressure E and the fric-
tion components at the walls (F" (0), F'_(/R), G' (0), G' (YR) ). Stabilization
of these quantities sets in only after /R = 20, just like the velocity com-
ponent distributions (Figures 2, 3). We may assume that, when the dimensionless
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distance s Yo/v = YR increases between the walls, the flow close to the ro-
tating wall must approximate the case investigated by Rogers and Lance (Ref. 1),
when the flow rotates at a certain angular rate w' < @ far from the plane rotating
at the angular rate w.

TABLE 1
Case k = 0
YE l F(0) F(VER) G’ (0) I ¢ (VR) E
1 0.0665 0.1000 0.9987 1.0043 0.1496
3 0.1710 - 0.2932 0.3051 0.4343 0.4250
4 0.1777 0.3729 0.2006 0.4427 0.0939
Y20 0.1704 0.4003 0.1664 0.4592 0.0788
3 0.1579 0.4305 0.1337 0.4793 0.0637
6 0.1304 0.4671 0.0986 0.5133 0.0420
7 0.1064 0.4887 0.0769 0.5376 0.0288
9 0.0819 0.5078 0.0631 0.5616 0.0188
10 0.0865 0. 5096 0.0695 0.5636 0.0204
12 0.1661 0.4760 0.1363 0.5311 0.0495
14 0.1867 0.4605 0.1533 0.5148 0.0578
15 0.1826 0.4620 (.4500 0.5150 0.0564
17 0.1699 0.4684 0.1440 0.5198 0.0513
20 0.1607 0.4747 0.1319 0.5258 0.0473
21 0.1645 0.4748 0.1324 0.5259 0.0475 "
21.5 0.1618 0.4747 0.1327 0.5259 0.0476

At the same time, the case of Bidewadt (Ref. 4) occurs close to the fixed wall,
when the flow rotates at the angular rate w" above the fixed base. Utilizing
both of these solutions, we find that W, ~ 0.31 and E = w%/z N 0.048 from the
condition w' = " = wy. We thus obtain F" (YR) ¥ 0.474, G' (YR) ¥ 0.53 for the
rotating wall. The computational results strive to these values when YR in~
creases, as may be seen from the velocity distribution. However, for the fixed
wall we obtain essentially different results: instead of F" (0) & 0.291,

G' (0) ¥ 0.24, according to Bbdewadt, we obtain F" (0) = 0.1618, G' (0) = 0.1327
here. This difference is illustrated by the velocity distribution close to the
fixed wall (Figure 3) -- the curves do not approach the Bddewadt curves (shown
by the dashed line) when /R increases.
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The result obtained may be explained by the fact that for a rotating plane
the boundary layer begins to develop from the axis of rotation and is propagated
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up to infinity. Therefore, the flow close to the rotating wall approximates
the case of the rotation of a disk in a rotating flow as one recedes from the
fixed wall. A boundary layer on the fixed plane begins to be formed at in-
finity. Therefore, if a rotating wall, and not a rotating flow, is located at
infinity —- as in the case of BSdewadt -- a completely different result must be
obtained. This is apparent in the fact that, if in the case of large /R there
is a section whose circumferential velocity component is almost constant, then
this is not true for the radial component, and we cannot speak of two boundary
layers at the walls separated by a core rotating like a rigid body (Figure 4).

TABLE 2
Kk VE=1 3 5 10
F”(0)

0 0.0665 0.1710 0.1579 0.0865 *
0.1 —0.5259 —0.0737 —0.0329 —0:0196
0.2 —1.0940 —0.2333 —0.1075 —0.0453
0.4 —2.1620 —0.4436 —0.2020 —0.0903 .
0.6 | —3.1468 —0.6076 —0.3004 —0.1336
0.8 —4.0571 —0.7613 —0.3868 —0.1754
1.0 —4.9015 —0.9119 —0.4759 —0.2172

F"(VER)
0 0.1000 0.2932 0.4305 0. 5096
0.1 0.7076 0.5052 0.5343 0.5503
0.2 1.3300 0.7560 0.7173 ‘0.7081
0.4 2.6203 1.4029 1.2996 1.2561
0.6 3.9720 2.2303 2.0886 2.0183
0.8 5.3865 3.2101 3.0352 2.9405
1.0 6.8644 4.3202 4.1136 3.9958

G (0)

0 0.9987 0.3051 0.4337 0.0695
0.1 0.8948 0.1153 0.0091 0
0.2 0.8018 0.0431 0.0005 0
0.4 0.6439 0.0056 0 0
0.6 0.5171 0.0007 0 0
0.8 0.4152 0.0001 0 0
1.0 0.3332 0 0 0

¢ (VR)
0 1.0043 0.4343 0.4793 0.5636
0.1 1.0921 0.6286 0.6435 0.6683
0.2 1.1762 0.7807 0.7772 0.7833
0.4 1.3344 1.0248 1.0134 1.0101
0.6 1.4813 1.2255 1.2134 1.2081
0.8 1.6184 1.3998 1.3879 1.3820
1.0 1.7472 1.5556 1.5441 1.5378

E

0 0.1496 0.1250 0.0637 0.0204
0.1 —0.4769 —0.0107 —0.0147 —0.0196
0.2 ~1.1338 —0.1544 —0.1076 —0.0906
0.4 —2.5428 —0.5412 —0.4123 —0.3613
0.6 —4.0839 —1.0959 —0.9010 —0.7992
0.8 —5.7633 —1.8275 —1.5551 —1.4030
1.0 —7.5869 —2.7351 —2.3795 —2.1720

We should point out that the nature of the velocity distribution and its
change with an increase in R corresponds in qualitative terms with the measure-

ments of Daily and Nece (Ref. 5). Their velocity profiles have characteristic
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bends corresponding to the calculations (see the curves for VR = 14 and VR = 21.5
in Figure 4). With an increase in R, there is a section having a constant cir-
cumferential component. However, a quantitative agreement cannot be expected,

in view of the fact that the experiments were performed with disks limited by a
cylindrical housing and with a turbulent flow regime, in addition.
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The nature of the change in the current surfaces with an increase in R is of
interest. Taking the dimensionless function of the current in the following
form

v=a= () 77

we may characterize the current surface for a given R by compiling a graph of
v =1, i.e.,

r VR\'A
s=(1“)

With an increase in R, the current lines press closer to the walls (Figure
5), and there is a characteristic bend in the current surfaces.

We should point out that an insignificant blast (k < 0.1 in the case /R < 20)
suppresses the inflow in the direction of the medium axis of rotation along the
fixed wall (Figures 5 and 6), and a convex profile of the radial velocities
develops. The flow twist is extinguished close to the fixed wall. For a given
blast (k = const), the twist is also extinguished with an increase in the R num-
ber close to the fixed wall. The flow input with the rotating wall is increased,
and the maximum of the radial velocity profile approaches that of the rotating wall
(Figure 7). Correspondingly, when there is a fixed distance between the walls the
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components of friction stress on the rotating wall increase, and they decrease
on the fixed wall. The influence of the blast intensity k and the Reynolds
number R upon the friction stress components at the walls and upon the pressure
is shown in Table 2. 1In particular, it is apparent that with an increase in R
the blast intensity k must increase when the medium inflow is suppressed along
the fixed wall (i.e., in order that F" (0) = 0).
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